WORKSHOP
Dutch Innovation on Micropollutants Removal from Municipal Wastewater

When: Thursday November 7th 2019
Where: Hall 13 Future Water Theatre at the Aquatech Expo RAI, Europaplein 24, 1078 GZ Amsterdam
Contact: Mirabella Mulder | mmulder@mirabellamulder.nl, +31 6 139 892 72
Cora Uijterlinde, STOWA | uijterlinde@stowa.nl, +31 6 557 510 83

Since 2018 the Dutch Water Partners are researching innovative technologies for removal of micropollutants from municipal wastewater. This research is carried out within an extensive programme, which is initiated and managed by STOWA and the Ministry of Infrastructure and Water Management.

At the Aquatech Expo, the first results from this programme will be presented. This programme focuses on feasibility of technologies, which are on the threshold of break-through. Key information on 20 selected technologies has been collected and judged by more than 100 Dutch water professionals. For this purpose sometimes also lab research has been carried out. In this programme not only design parameters are reviewed, but also key-information on expected effluent quality, CO\textsubscript{2} footprint and costs. This information on performances is determined in a standard way for all technologies. In this way the technologies can be compared and decisions on which technologies are further researched in pilot experiments, can be made transparent.

The results of this research will be pitched by Dutch water professionals with an impressive professional track record. There will be room for discussions of the results with the audience in this interactive event in Hall 13 at the Aquatech Expo November 7th.

This event consists of several one hour thematic sessions:

10.45 – 11.45 Oxidation (ozonation and UV/H2O2)
11.45 – 12.45 Filtration & reuse of wastewater
13.45 – 14.45 Adsorption through new materials
14.45 – 15.45 Activated Carbon Adsorption

You are welcome to join one or more of these one hour sessions for free (please register). Walk-ins are welcomed as long as there are non-reserved seats available. Admittance to the Theme Sessions is not allowed after start-up. To guarantee your seat at one of the theme sessions please register.

- Register to attend the workshop “Dutch Innovation on Micropollutants Removal from Municipal Wastewater at www.stowa.nl (agenda; November 7), AND
- Register your free visit to the Aquatech at www.aquatechtrade.com/amsterdam/

STOWA welcomes all other Dutch and international commercial or non-commercial parties, which have carried out research in the field of removal of micropollutants from municipal wastewater, to give a POSTERPRESENTATION, which participants can visit during the event. For more information on selection and presentation of posters please contact Mirabella Mulder of STOWA (mmulder@mirabellamulder.nl)
Dutch Innovation on Micropollutants Removal from Municipal Wastewater

When: Thursday November 7th 2019
Where: Hall 13 Future Water Theatre at the Aquatech Expo RAI, Europaplein 24, 1078 GZ Amsterdam
Contact: Mirabella Mulder | mmulder@mirabellamulder.nl, +31 6 139 892 72
Cora Uijterlinde, STOWA | uijterlinde@stowa.nl, +31 6 557 510 83

DRAFT PROGRAM

10.00 Opening EXPO Aquatech
10.15 Registration with coffee and tea and poster presentations
10.30 Welcome - Cora Uijterlinde | STOWA
10.45 Oxidation (ozonation and UV/H2O2)
Feasibility study Usoniq Reactor
Feasibility study O3-STEP: combined micropollutants and nitrogen removal
PAC4TOC - reducing DOC by dosing PAC to WWTP effluent
Pilot studies on ozonation and UV/H2O2 treatment of WWTP effluent Aarle Rixtel
Pilot study on ozonation of WWTP effluent Groote Lucht

11.45 Filtration & reuse of wastewater
Feasibility Enzymatic filtration of WWTP effluent (Pharem)
Feasibility Nano filtration of WWTP effluent
Pilot ozonation and ceramic filtration WWTP effluent Wervershoof
Reuse of Water I: a new way of wastewater treatment through physical-chemical processes
Reuse of Water II: pilot physical-treatment of raw sewage for resource recovery WWTP Wilp

12.45 Poster presentations

13.45 Adsorption through new materials
Feasibility reducing CO2 footprint by using bio-activated carbon
Feasibility adsorption through Cyclodextrines
Feasibility adsorption through zeolites
Feasibility adsorption micropollutants and P-removal through coated sand particles

14.45 Activated Carbon Adsorption
Feasibility ARVIA: electro-chemical induces GAC filtration
Feasibility PAC on clothfilters: combined removal of micropollutants and phosphorus
Feasibility PACAS in aerobic granular systems (Nereda©)
Feasibility Enhancement Powdered Activated Carbon in Sludge (PACAS) through dosing Fe
Pilot Enhanced Biological Granular Activated Carbon Filtration WWTP Emmen

15.45 Closure